361 research outputs found

    Shear Flows and Shear Viscosity in a Two-Dimensional Yukawa System (Dusty Plasma)

    Full text link
    The shear viscosity of a two-dimensional liquid-state dusty plasma was measured experimentally. A monolayer of highly charged polymer microspheres, with a Yukawa interaction, was suspended in a plasma sheath. Two counter-propagating Ar laser beams pushed the particles, causing shear-induced melting of the monolayer and a shear flow in a planar Couette configuration. By fitting the particle velocity profiles in the shear flow to a Navier-Stokes model, the kinematic viscosity was calculated; it was of order 1 mm^2/s, depending on the monolayer's parameters and shear stress applied.Comment: all 3 figures are combined in a separate pdf fil

    Anisotropic shear melting and recrystallization of a two-dimensional complex (dusty) plasma

    Full text link
    A two-dimensional plasma crystal was melted by suddenly applying localized shear stress. A stripe of particles in the crystal was pushed by the radiation pressure force of a laser beam. We found that the response of the plasma crystal to stress and the eventual shear melting depended strongly on the crystal's angular orientation relative to the laser beam. Shear stress and strain rate were measured, from which the spatially resolved shear viscosity was calculated. The latter was shown to have minima in the regions with high velocity shear, thus demonstrating shear thinning. Shear-induced reordering was observed in the steady-state flow, where particles formed strings aligned in the flow direction.Comment: 7 pages, 8 figures, submitted to Physical Review

    Supersonic dislocations observed in a plasma crystal

    Full text link
    Experimental results on the dislocation dynamics in a two-dimensional plasma crystal are presented. Edge dislocations were created in pairs in lattice locations where the internal shear stress exceeded a threshold and then moved apart in the glide plane at a speed higher than the sound speed of shear waves, CTC_T. The experimental system, a plasma crystal, allowed observation of this process at an atomistic (kinetic) level. The early stage of this process is identified as a stacking fault. At a later stage, supersonically moving dislocations generated shear-wave Mach cones

    Dust interferometers in plasmas

    Get PDF
    An interferometric imaging technique has been proposed to instantly measure the diameter of individual spherical dust particles suspended in a gas discharge plasma. The technique is based on the defocused image analysis of both spherical particles and their binary agglomerates. Above a critical diameter, the defocused images of spherical particles contain stationary interference fringe patterns and the fringe number increases with particle diameters. Below this critical diameter, the particle size has been measured using the rotational interference fringe patterns which appear only on the defocused images of binary agglomerates. In this case, a lower cut-off limit of particle diameter has been predicted, below which no such rotational fringe patterns are observed for the binary agglomerates. The method can be useful as a diagnostics for complex plasma experiments on earth as well as under microgravity condition

    Microstructure of a liquid complex (dusty) plasma under shear

    Full text link
    The microstructure of a strongly coupled liquid undergoing a shear flow was studied experimentally. The liquid was a shear melted two-dimensional plasma crystal, i.e., a single-layer suspension of micrometer-size particles in a rf discharge plasma. Trajectories of particles were measured using video microscopy. The resulting microstructure was anisotropic, with compressional and extensional axes at around ±45∘\pm 45^{\circ} to the flow direction. Corresponding ellipticity of the pair correlation function g(r)g({\bf r}) or static structure factor S(k)S(\bf{k}) gives the (normalized) shear rate of the flow.Comment: 5 pages, 6 figure

    Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates

    Get PDF
    A new type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The sys- tem did not crystallize and may be characterized as disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe pat- terns. The in-plane and inter-plane particle separations exhibit nonmonotonic dependence on the discharge pressure which agrees well with theoretical predictions

    Coupling of non-crossing wave modes in a two-dimensional plasma crystal

    Get PDF
    We report an experimental observation of coupling of the transverse vertical and longitudinal in-plane dust-lattice wave modes in a two-dimensional complex plasma crystal in the absence of mode crossing. A new large diameter rf plasma chamber was used to suspend the plasma crystal. The observations are confirmed with molecular-dynamics simulations. The coupling manifests itself in traces of the transverse vertical mode appearing in the measured longitudinal spectra and vice versa. We calculate the expected ratio of the trace to the principal mode with a theoretical analysis of the modes in a crystal with finite temperature and find good agreement with the experiment and simulations.Comment: 4 figures, 5 pages, accepted for publication in PRL Nov 201

    First direct measurement of optical phonons in 2D plasma crystals

    Full text link
    Spectra of phonons with out-of-plane polarization were studied experimentally in a 2D plasma crystal. The dispersion relation was directly measured for the first time using a novel method of particle imaging. The out-of-plane mode was proven to have negative optical dispersion, comparison with theory showed good agreement. The effect of the plasma wakes on the dispersion relation is briefly discussed.Comment: submitted to Physical Review Letter

    Nonlinear structures of strongly coupled complex plasmas in the proximity of a presheath/sheath edge

    Get PDF
    The formation of a steady-state nonlinear potential structure of a double-layer type near the presheath/sheath edge of a plasma discharge is theoretically investigated in complex plasmas containing Boltzmann electrons, cold fluid ions and strongly coupled microparticles. Equilibrium of the particles is provided by the electrostatic force and an effective 'dust pressure' associated with electrostatic interactions between the highly charged grains. The results are of importance for complex plasma experiments in microgravity conditions, for thermophoretically levitated configurations and for processing plasmas loaded by nanometer-sized microparticles
    • …
    corecore